Con esta familia, incorpora en el mercado una gama de ventosas que ofrecen al profesional **soluciones a la hora de evitar problemas derivados de la presencia de aire en las tuberías**. Estas ventosas han sido desarrolladas para su utilización en distintos sectores. Para adecuarse a cada uso, la gama está compuesta por **tres tipos de ventosas**, en materiales PPFV y PA:

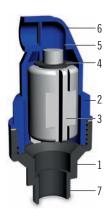
Cinética. Se utilizará para **evacuar grandes cantidades de aire de la tubería**, generadas principalmente por causas propias del sistema (puesta en marcha de bomba, llenado de tuberías, etc) y para introducir aire de la atmósfera a la tubería (vaciado de la tubería). El efecto cinético permanece completamente cerrado siempre y cuando exista presión dentro de la tubería, y no se abre de nuevo hasta que el sistema es drenado o aparece presión negativa. Su diseño dinámico permite purgar el aire a alta velocidad.

Simple efecto o automático. Se utilizará **únicamente para evacuar pequeñas cantidades de aire de la tubería**, producidas principalmente por causas propias del fluido, de forma automática a través del pequeño orificio que tiene en la parte superior, este orificio ha sido diseñado para eliminar mayor cantidad de aire evitando obturaciones y pérdidas.

Doble efecto o trifuncional. Combina las funciones de las de efecto automático y las de efecto cinético. Poseen dos orificios para la evacuación y admisión del aire. Durante el llenado de las tuberías el agua va empujando el aire, el cual va siendo evacuado a la atmósfera a través del gran orificio de la válvula. El pequeño orificio de efecto automático permanece abierto durante este proceso. Cuando la red está a presión, el pequeño orificio abre automáticamente al detectar pequeñas bolsas de aire creadas por las turbulencias del fluido.

CARACTERÍSTICAS VENTOSAS NET®

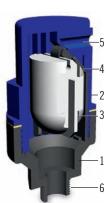
- Ventosas dirigidas especialmente a los sectores de la agricultura, piscina, obras públicas e industria.
- Cuerpo fabricado en materiales plásticos PPFV y PA.
- Base fabricada en PA con opción en latón.
- Máxima estanqueidad a bajas presiones.
- Evita el efecto del golpe de ariete.
- Evitan las roturas por colapso provocados por el vacío en operaciones de vaciado de filtros, depósitos y sobre todo en conducciones realizadas en tubería metálica.
- Evita los fenómenos de cavitación en sistemas de bombeo.
- Aumentan rendimiento energético en bombeos al evitar la impulsión de aire en la tubería.
- Evitan los errores de lectura en las medidas de caudal al eliminar el aire de la conducción.
- El diámetro de las ventosas será en general mayor cuanto mayor sea el diámetro de la tubería en la que se han de instalar, si bien es necesario tener en cuenta otros aspectos para su elección.
- Salidas acodadas roscadas para facilitar la evacuación del agua expulsada.
- Desde 1/2" a 3".
- PN 16 en PPFV y PN 25 en PA.


RECOMENDACIÓN DE LOCALIZACIÓN DE VENTOSAS

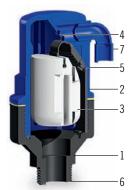
- ✓ Puntos en que la línea de corriente varía respecto a la línea piezométrica, doble efecto.
- ✓ Puntos elevados de la tubería (arqueta válvula), doble efecto.
- **✓ Ramales largos de pendiente uniforme**, doble efecto, una cada 500m.
- ✓ Salida de grupos de hombeo, efecto cinético en un punto alto antes de la válvula de retención.
- ✓ A la entrada de instrumentos de medición (contadores), doble efecto.
- ✓ A la salida de válvulas reductoras de presión, simple efecto.
- ✓ Reducciones de diámetro de la tubería, simple efecto.
- ✓ Cabezales de filtración, doble efecto en un punto alto.

INSTALACIÓN VENTOSA "CODO AIR"

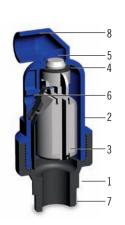
DESPIECE Y MATERIALES


Efecto cinético (C1)

- 1. Material base: PA / Latón.
- 2. Material cuerpo: PP/ PA.
- 3. Material boya: PP expandido.
- 4. Material junta cierre: EPDM.
- **5.** Secc. gran orificio: 314,15 mm².
- **6.** Codo integrado salida R/H, BSP.
- 7. Tipo de rosca: BSP/ NPT.


Efecto cinético (C2)

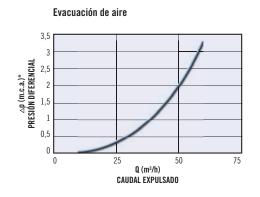
- 1. Material base: PA / Latón.
- 2. Material cuerpo: PP/ PA.
- 3. Material boya: PP expandido.
- 4. Material junta cierre: EPDM.
- 5. Secc. gran orificio: 491 mm².
- 6. Salida R/H. BSP.
- 7. Tipo de rosca: BSP/ NPT.


Simple efecto (S1)

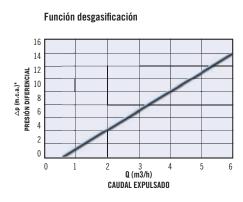
- 1. Material base: PA / Latón.
- 2. Material cuerpo: PP/ PA.
- 3. Material boya: PP expandido.
- 4. Material junta cierre: EPDM.
- 5. Secc. pequeño orificio: 18,64 mm².
- 6. Tipo de rosca: BSP/ NPT.

Doble efecto o trifuncional (D1)

- 1. Material base: PA / Latón.
- 2. Material cuerpo: PP / PA.
- 3. Material boya: PP expandido.
- **4.** Sección gran orificio: 75 mm². Sección pequeño orificio: 3,83 mm².
- 5. Material junta cierre: EPDM.
- 6. Tipo de rosca: BSP/ NPT.
- 7. Codo R/H 3/8".

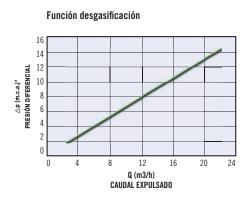


Doble efecto o trifuncional (D2)


- 1. Material base: PA / Latón.
- 2. Material cuerpo: PP/ PA.
- 3. Material boya: PP expandido.
- 4. Junta cierre: EPDM.
- 5. Sección gran orificio: 491 cm².
- **6.** Sección pequeño orificio: 47 mm².
- 7. Tipo de rosca: BSP/ NPT.
- 8. Salida R/H. BSP.

DATOS TÉCNICOS Y NORMATIVA UNE

DOBLE EFECTO 1/2". 3/4". 1" (D1)

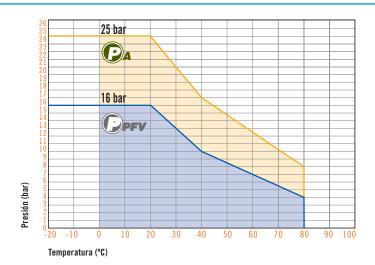


DOBLE EFECTO 2". 3" (D2)

EFECTO CINÉTICO 1/2", 3/4", 1" (C1)



EFECTO CINÉTICO 2", 3" (C2)



SIMPLE EFECTO 1/2", 3/4", 1" (S1)

Tabla de presiones nominales para la familia 17								
	Presión nominal en bar	Presión nominal PSI						
PPFV. Ø1/2" a 3"	PN16	232						
PA. Ø1/2" a 3"	PN25	362						

■ La normativa aplicable a las ventosas Net®, viene dada por las siguientes normas:

UNE-EN 1074-4 "Válvulas para el suministro de agua. Requisitos de aptitud al uso y ensayos de verificación. Parte 4: purgadores y ventosas".

SELECCIÓN DE VENTOSAS

A la hora de **seleccionar una ventosa** para una determinada aplicación hay que seguir los siguientes pasos:

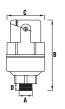
- Determinar el tamaño de cada ventosa de forma independiente para cada punto de la instalación.
- Determinar el caudal de aire máximo tanto para el llenado como para el vaciado de la tubería.
- Con el caudal de expulsión o admisión **buscar en la gráfica correspondiente a la ventosa que queremos utilizar**, hay que tener en cuenta que para evitar problemas, la presión diferencial que corresponda con el caudal que necesitamos debe de ser inferior a 3.5 mca.
- Si la capacidad de admisión o descarga de aire no puede alcanzarse con una sola válvula, se podrán instalar varias en paralelo.

La siguiente tabla muestra de forma rápida los **tamaños aconsejados de ventosa** en función del diámetro de la conducción en la que dan servicio.

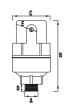
Diámetro conducción (mm)	Diámetro ventosa
0 - 100	3/4"
100 - 150	1"
150 - 200	1 1/4"
200 - 250	2"
250 - 450	3"
450 - 1000	4"

Cinética (C1)

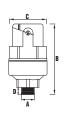
CÓDIGO	MATERIAL	ØA	PESO(G)	В	C	D	E	F
17001	PPFV	1/2"	285	184	75	14	16	3/4"
17002	PPFV	3/4"	289	186	75	16	16	3/4"
17003	PPFV	1"	295	189	75	19	16	3/4"
17501	PA	1/2"	296	184	75	14	16	3/4"
17502	PA	3/4"	301	186	75	16	16	3/4"
17503	PA	1"	307	189	75	19	16	3/4"


Cinética, base latón (C1)

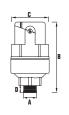
CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E	F
17303	PPFV	1"	650	189	75	19	16	3/4"
17703	PA	1"	662	189	75	19	16	3/4"


Simple efecto (S1)

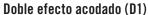
CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E
17021	PPFV	1/2"	286	137	75	14	1/8"
17022	PPFV	3/4"	290	139	75	16	1/8"
17023	PPFV	1"	297	142	75	19	1/8"
17521	PA	1/2"	298	137	75	14	1/8"
17522	PA	3/4"	302	139	75	16	1/8"
17523	PA	1"	310	142	75	19	1/8"


Simple efecto, base latón (S1)

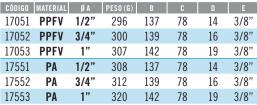
CÓD	IGO MA	TERIAL	ØΑ	PESO(G)	В	C	D	E
173	23 P	PFV	1"	652	142	75	19	1/8"
177	23	PA	1"	665	142	75	19	1/8"


Doble efecto (D1)

CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E
17041	PPFV	1/2"	288	137	75	14	1/8"
17042	PPFV	3/4"	292	139	75	16	1/8"
17043	PPFV	1"	299	142	75	19	1/8"
17541	PA	1/2"	300	137	75	14	1/8"
17542	PA	3/4"	304	139	75	16	1/8"
17543	PA	1"	312	142	75	19	1/8"

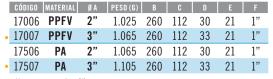


Doble efecto, base latón (D1)

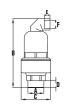

CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E
17343	PPFV	1"	654	142	75	19	1/8"
17743	PA	1"	667	142	75	19	1/8"

|--|

CÓDIGO MATERIAL	ØΑ	PESO(G)	В	C	D	E
17353 PPFV	1"	662	142	78	19	3/8"
17753 PA	1"	675	142	78	19	3/8"

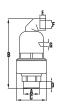


Efecto cinético (C2)



CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E	F
17306	PPFV	2"	1.944	260	112	30	21	1"
17706	РΔ	2"	1 984	260	112	30	21	1"

Efecto cinético, base latón (C2)


CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E	F
17306	PPFV	2"	1.944	260	112	30	21	1"
17706	PA	2"	1.984	260	112	30	21	1"

Doble efecto (D2)

	CÓDIGO	MATERIAL	ØΑ	PESO(G)	В	C	D	E	F	G
	17106	PPFV	2"	1.045	260	112	30	21	1"	3/8"
•	17107	PPFV	3"	1.085	260	112	33	21	1"	3/8"
	17606	PA	2"	1.084	260	112	30	21	1"	3/8"
•	17607	PA	3"	1.124	260	112	33	21	1"	3/8"
• Ventosa mayorada a 3"										

CÓDIGO MATERIAL ØA 17206 **PPFV** 2" 1.964 260 112 30 21 1" 3/8" 17806 **PA** 2.003 260 112 30 21 1" 3/8"

Doble efecto, base latón (D2)